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Single-Grid Spectral 

Collocation for the Navier-Stokes Equations 

by Christine BERNARD1 1, Claudio CANUTO 2, Yvon MADAY3 & Brigitte MkTIVET4 
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Abstract : The aim of the paper is to study a collocation spectral method to approximate the 
Navier-Stokes equations : only one grid is used, which is built from the nodes of a Gauss- 
Lobatto quadrature formula, either of Legendre or of Chebyshev type. The convergence is 
proven for the Stokes problem provided with inhomogeneous Dirichlet conditions, then 
thoroughly analysed for the Navier-Stokes equations. The practical implementation algorithm 
is presented, together with numerical results. 
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( I .  1 )  

1. I ntroduction, 

- v A u  + grad p + ( u . V ) u  = f 
d i v u = O  i n 0  , 

in 0 , 

L 
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(1.3) 

var  

- v A u + g r a d p = f  inn , 

d i v u = O  i n n  , 

ational fo rmula t ion  of  the Navier-Stokes equations n standard Sobolev spaces. 

However, we also consider the case of  Chebyshev polynomials; indeed, the nodes are then 

images b y  the cosine funct ion of equidistant points, so that the use of the Fast Four ier  

Transform al lows fo r  a less expensive computation of the der ivat ives o r  of the nonlinear 

terms. This last method i s  numer ica l ly  cheaper, but  i t s  analysis involves a non t r i v i a l  

formulat ion of  the equations in appropriate weighted Sobolev spaces w i t h  the Chebyshev 

weight, the propert ies of which are given in [BM 11. 

An out l ine of  the paper i s  as follows. Section I I  i s  devoted to the def in i t ion of the 

discrete approximation spaces and collocation problems, f i rst  in the homogeneous case, then 

i n  the inhomogeneous one. In Section I l l ,  we recal l  the convergence resu l ts  of [BMM]  and 

[BCM] f o r  the Stokes problem in  the homogeneous case, then we complete them for  

inhomogeneous boundary conditions. In Section I V ,  the analysis i s  extended to  the 

Navier-Stokes equations, in  both cases of homogeneous and inhomogeneous boundary 

conditions, F ina l ly ,  in Section V ,  the techniques required by  the numerical implementation 

of the method are presented and examples of numerical resul ts  a re  given. 
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Notation 

The norm o f  any Banach space E i s  denoted by I I s I IE  , For any pa i r  (E,F) of  Banach 

spaces, Z:(E,F) represents the space of continuous l inear mappings f rom E into F. We mean 

by  A o B the tensorial product of any sets A and B in a Banach space, wh i l e  A e 2  i s  the 

tensor ia l  product of  A by i tsel f .  I n  a l l  that fol lows, c ,  c' ... a re  generic constants, 

independent of the discretization parameter. 

In Sections I I  to I Y ,  we shal l  work  in the square fl = ]- 1 , 1  [ 2 .  Let us precise some 

notation about th i s  domain. The generic point in  fl w i l l  be denoted by  x = (x,y)  (o r  

sometimes by (x,  , x,)). We introduce the corners aJ , J E ZL/4Z, o f  fi (where aJ+, follows 

a, counterclockwise), and cal l  f the edge w i t h  vert ices aJ-, and a, ; fo r  any edge f J , J E 

IL/4iZ, nJ i s  the un i t  outward normal to fl on r, and T~ the un i t  vector orthogonal to nJ , 

di rected coun te rc l  oc k w ise. 

n 

Sobolev spaces 

For any domain A in Rd and for any real  number s p 0, we use the standard hi lbert ian 

Sobolev spaces HS(A) ,  the norm of which i s  denoted by l l . ~ l s , A  . On the square fl , we shall use 

the scalar product 

(1.5) ($,$I = In $(XI $(XI dx . 
We also recal l  that, f o r  any ir!eger m 2 1 ,  the semi-norm 
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(1.6) Id,,-) ( CTLO llamlp/axjaym-jlli,n )'I2 

i s  a norm on the space H:(fl) of the functions of Hm( f l )  which vanish on the boundary an 
together w i t h  a l l  t he i r  derivatives up to order m- 1 (the traces being defined i n  the sense of 

[LM]). The dual space of H:(fl) w i l l  be denoted by H-m(fl), and i t  i s  standard to note that 

(1.7) H-'(f l )  = { f + ag/ax + ah lay ,  (f,g,h) E L2(f l )3 } 

The space of functions in L2( f l )  w i t h  a null integral i s  noted L i ( f l ) .  

. 

Next, we reca l l  some basic mater ia l  about weighted spaces of Chebyshev type ( for  

f u r the r  details, see e.g. [CHQZ][BM 1 ] [M2]) .  I f  ~ ( t )  = ( 1  -t2>-'/2 denotes the Chebyshev 

weight on the interval  A =]- 1 , I  [, let 

L:(A) = ( cp : A --+ IR ; J:, cp2(C) e ( t >  d t  < +oo 1 
be the Lebesgue space associated w i t h  the measure @ ( C )  d t ,  provided with the norm 

(1.8) 

The weighted Sobolev spaces are defined as follows : fo r  any integer m 0,  H:(A) i s  the 

subspace of L f ( A )  of the functions such that the i r  d istr ibut ional  derivatives of order G m 

belong to L:(A); i t  i s  a H i l be r t  space for the inner product associated w i t h  the norm 

l l c p ( I O , p , h  = (J:, s2(C) e ( t )  d t ) l l 2  I 

m 2 )1 /2 , (In9) llg\lm,p,A = ( ck = O  181k,p,r\ 

where 

(1.10) I Y I ~ , ~ , ~  = IIdkg/dtk IIO,@,A . 

For a rea l  number s I m + a, m E [N, 0 < (I < 1 , we define H I ( A )  as the interpolat ion space 

between H:+'(A) and H:(A) of index I-a (cf. [LM]) ;  we denote i t s  no rm by ~ ~ . ~ ~ s , Q , A .  

Fina l l y ,  we can apply a rotat ion and a translat ion to define s im i la r  Sobolev spaces on any 

segment of  length 2 i n  IR2. We use the same notation as before to indicate them, as we l l  as 

the i r  norms. 

The Chebyshev weight on the square fl i s  defined as w(x) = p(x) p(y). Let 

L i ( f l )  = ( cp : fl --+ IR ; J n  cp2(x) W(X)  dx < +oo } 

be the Lebesgue space associated w i t h  the measure w(x) dx, provided w i t h  the inner product 

( 1 . 1  I )  

and the norm II.llo,,,-) = Next, weighted Sobolev spaces are  defined as fol lows : for  

any integer m 2 0 ,  H Z ( f l )  i s  the subspace of L:(fl) of the functions such that t h e i r  

d istr ibut ional  derivatives of order G m belong to L$( f l ) ;  i t  i s  a H i l be r t  space for the inner 

(lp,q), = Jn lp(x> q(x) W(X> dx 

product associated w i t h  the norm 

where 
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k- j  2 (1.13) 191k,,,n = ( x!=O Ilakg/ax'aY Ilo,w,n )1'2 * 

For a real  number s = m t u ,  m E IN, 0 < u < 1 , we define HL(f l)  as the interpolat ion space 

between HE"(f i> and H,"(Q) of index 1 - u ;  we denote i t s  norm by ll,/ls,w,n . Final ly,  for any 

integer m z 1 , we consider the closed subspace of the functions of H,"(O) which vanish on 

the boundary an together w i t h  a l l  their derivatives up to order m-1  ( the traces being 

defined i n  the sense of [ LM] ) ;  th is space, denoted by H,",o(n), i s  the closure of  B(n) for  

the norm of H,"(Q) (see [BM 1 , Prop. 11.91). Due to  the Poincare inequali ty, an equivalent 

norm on HE#,(O) i s  the semi-norm I.lm,w,n . The dual space of HZ,,(fi) w i l l  be denoted by 

H im( f i ) ;  i f  the space LE(fi) i s  identif ied to i t s  dual space, we have for instance 

(1.14) 

We also introduce the space L i ,o (0 )  of functions q i n  L i ( Q )  such that In q(x) o ( x )  dx i s  

equal to 0. 

H,'(R) = { f t ag/aX t ah/@, (f,g,h) E Li(n)3 } , 

Variat ional fo rmula t ions  

I n  order to  t reat  the Legendre and Chebyshev approximations simultaneously, we 

introduce a le t te r  A which i s  L in the Legendre case and C in the Chebyshev case, a 

parameter IX equal to 0 i n  the Legendre case and to  - 1 / 2  i n  the Chebyshev case ( th i s  i s  the 

power of ( 1 - c 2 )  involved i n  the corresponding weight). For instance, the symbol H i ( Q )  

stands fo r  the space HS(n) in the Legendre case (A  = L ,  IX = 0) and fo r  the space H:(n) i n  

the Chebyshev case (A = C, o( = - 1 /2). 

To w r i t e  appropriate variat ional formulations of equations ( 1 . 1  ) and (1.31, we f i r s t  

consider the boundary condition ( l ,2), Let us assume that the function g i s  such that the gJ = 
g,,, , J E Z/4Z, satisfy 

(I. 15) gJ E HF-a)/2(rJ)2 J E Z / 4 Z  , 

(1.16) L J C ~ / ~ Z  J , J ~ J * " ' J ~ U = O  * 

Assume moreover, i n  the Legendre case, 

(1,17)L 1 0 2 [ g J ( B J - t T J ) - g J t l ( a J t t T J t l ) ] 2 t - 1 d t <  to0 , J E Z / 4 Z  , 

and, i n  the Chebyshev case, 

Then, thereexists [G,  Thm 1.5.2.3][BCM, Thm 111.21 a function ub in H:(fi)2 satisfying 

(1.18) div ub= 0 i n n  , 

(1.19) u b = g J  onr ,  , J c Z / 4 Z  . 

(1.171, gJ(aJ) = gJ+l(aJ) J E z14z a 
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(1.231, ’ V V E H:,o(n)2, aA(U,V) + ( V  I grad + ((U.V>U I V )A = (f,V)A 

V q E L:(fl), (d iv u , q), = 0 . 
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We begin by introducing the collocation f ramework,  especially the collocation grid. 

Then, we present the collocation discretization of the Stokes and Navier-Stokes equations 

provided w i t h  homogeneous boundary conditions. That leads us to define suitable discrete 

spaces of pressures. F ina l l y ,  we can extend the collocation problems to the case of 

inhomogeneous boundary conditions. 

11.1. The co l l oca t i on  f r a m e w o r k ,  

Let us introduce some monodimensional notation. For any nonnegative integer n ,  

P , ( A )  denotes the space of res t r i c t ions  to A = 1-1 , 1 [  of polynomials of degree G n. We 

shall use two famil ies of orthogonal polynomials on A : 

1 )  the Legendre polynomials ( L, , which are orthogonal f o r  the measure d t ,  

normalized by the fol lowing condition : the Legendre polynomial L, , n p 0, i s  of degree n 

and satisfies L,(-c I )  = ( 2  1 1,; 
2) the Chebyshev polynomials ( T, = cos (n Arccos t )  I n 3  , which are orthogonal for  the 

measure o ( t )  d t  ; of course, the Chebyshev polynomial T, , n P 0, i s  also of  degree n and 

satisfies T,(& 1 )  = ( 2  1 )n. 

In order to have a unique notation in the Legendre and Chebyshev cases, we introduce, fo r  

each real  number oc > - 1  , the Jacobi polynomials ( J: which are orthogonal fo r  the 

measure ( 1 -t2)' d t .  Since J: i s  of degree n and such that 

J:(+ 1 ) = ( 2  1 )" r ( n t o c t  1 ) I n !  r ( N +  1 )  , 
where denotes the Euler 's gamma-function, the Legendre polynomial L, coincides w i t h  

J," , wh i le  the Chebyshev polynomial T, i s  equal to 4" [(n!I2 / (2n)!] J,"2. Fina l l y ,  we 

reca l l  that the J: , n 2 0, are the eigenfunctions of a S turm-L iouv i l le  operator, more 

precisely they satisfy 

( 1 1 . 1 )  ((1-t ) J,')' + n (n+2oc t l )  (1-t J, 0 . 
We re fe r  to [ DR, 8 1.131 for the propert ies of these orthogonal polynomials. 

2 ut1 a 2 a  u 

Next, l e t  N be a f ixed integer p 3. We denote by t; , 0 G j Q N, the zeros of the 

polynomial  ( 1  -t2) J:', w i t h  - 1  = to < t 1  < ... < t i  = 1 .  There exist  weights 64 , 

0 4 j G N, such that the Gauss-Lobatto quadrature formula 

(11.2) 

A A 

q ( 5 )  ( 1  -t2Ia d t  = zyz0 Q(tf)  12; 
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(11.4) 

i s  exact f o r  any polynomial i n  P 2 N - , ( A ) .  We shal l  need the interpolat ion operator C," 

associated w i t h  these nodes : for  any function cp in  eo(x>,  Cicp belongs to P N ( A )  and 

satisfies 
(11.3) i ~ c p ( t ~ )  = c p ( r S j )  A , O  6 j 6 N I 

' t: = cos( (N- j )n /N)  , 0 6 j 6 N , 
$ = n / N  , I < j j , < - t ,  and Q ~ = Q ~ = ~ / ~ N  c c  . 

j =  1 
j = 2  
i = 3  
; = 4  
j - 5  
j = 6  
f = 7  

Legendre case 
0.9695680462702 179 
0.899200533093472 I 
0.79200829 186 18 152 
0.652388702882493 1 
0.48605942 1887 1376 
0.2998304689007632 
0.10 I32627352 19494 

Chebyshev case 
0.978 1 476007338056 
0.9 135454576426009 
0.8090 169943749474 
0.669 1306063588582 
0.5000000000000000 
0.3090 169943749474 
0.1045284632676535 

Now, l e t  us consider the two-dimensional domain n = 1- 1 , I  [ 2 .  For any nonnegative 

integer n, we denote b y  Pn(n)  the space of rest r ic t ions to R of polynomials of  degree < n 

w i t h  respect to each var iable,  i.e. the space P,(A> o P,(A); we also introduce the space 

P,O(n) of polynomials o f  Pn(n)  which are equal to 0 on the boundary an. 

For the f ixed integer N, we define the g r i d  Z," by 

(11.5) z , " = [ X , k  A =(< ,  A A  , c k ) ; O < j , k < N }  

The idea of defining the g r i d  f rom the nodes of a Gauss type quadrature fo rmula  was f i r s t  

presented i n  [Go]. 
A - A  To each point  xjk i n  ;N , w e  associate the weight pj: = e; p: . That allows us to define 

the fol lowing b i l inear  fo rm on co(fi) x co(fi> 
N N A A A  

( 1  1.6) ( V  t$)A,N = cj =O c k = O  $('jk $('jk ) e j k  ' 

Since the quadrature fo rmula  (11.2) i s  exact on P 2 N - , ( A ) ,  i t  coincides w i t h  the scalar 

product ( , , , ) A  on P N - , ( C l ) ;  i t  i s  known [CQI, 831 that ,  on P N ( n ) ,  i t  i s  s t i l l  a scalar 

product, and the norm : cp + (cp,lp);(i i s  equivalent on PN(Cl) to the norm : cp --+ llcp[lo,A,fl , 
w i t h  equivalence constants independent of  N. F ina l ly ,  we define the interpolat ion operator 



- 9  - 

( 1  1 . 8 ) ~  

3," on the g r i d  E," in the fol lowing way : f o r  any function q i n  co(a), 3,"q belongs to 

P,(n) and satisfies 

(11.7) 3,"lp(x) = Y(X)  , X E  ;, . - A  

( -  v Au, + grad p,>(x) = f(x) 

(div u,)(x) = 0 , x E Z, , 

, x E Z," I? n , 
A 

F ina l l y ,  to discret ize the Navier-Stokes equations ( I .  1 ) ( l .4 ) ,  l e t  us consider the 



- 10- 

( 1 1 .  1 61A ' [ -  v AuN + grad pN + xi =1 a3,A(uNiu,)/axi1(x) = f(x) , x ;,A n n , 
A (div u,)(x) = 0 , x E Z, , 

Our purpose i s  to choose appropr iate discrete pressure spaces M, , such that 

problems (Il,8)* ( l l .9 )A and( l l . l 6 ) ,  (l1.91,are well-posed. 

( I I . l 7 ) ,  

11.3. T h e  d isc re te  Dressu re  maces, 
It i s  known [Mo][Me][BMM][BCM] that the space P,(n) contains "spurious" modes 

for the pressure, i .e.,  polynomials the gradient of which vanishes at the collocation nodes of 

Z t  n 0 ;  of course, even i f  they can be solved numerical ly (see Section V ) ,  the collocation 

problems cannot be well-posed i f  any of these modes belongs to M, , hence we have to 

characterize them. More precisely, for i = 1 o r  2, we define the subspaces 

( I I .18) Z~A,N = ( qN E P,(n); v VN E p i ( n ) 2 ,  biA,N(VN t 9,) = 0 ) I 

Let us also introduce, i n  the Chebyshev case, the polynomial s, of P,( A )  which satisfies 

(11.19) v g , ~  P,(A), cjZ0 s,(~f) rp,(tf) ef=jJ1 d t  . 
A A Final ly,  we need the Lagrange polynomial r j  associated w i t h  each node tf , 0 Q j Q N : r j  

belongs to P,(A), i s  equal to 1 i n  tf and to 0 i n  any other node t$ , 0 d k d N, k # j .  

N 

. 
v VN E pi(n)2, aA,N(u, , vN) + blA,N(VN P,) 

2 A 
+ xi = 1  (a3, (u,iuN)/axi t vN)A,N = (f#vN)A,N 9 

v qN E p,(n), b,,,N(UN , = 0 
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' v VN E p;(n)2, aA,N(uN I VN) t b,A,N(vN I PN) = ( f tVN)A,N I 

We have [BMM, Lemma V.  1 ][BCM, Prop. V.2 and V.31 

m a  1 1 . 1  : Thesubspace ZiA,, , i 1 or  2 , isofdimension 8. I f  isspanned 

1 

2 )  in the Chebyshev case, for i = 1 , by ( T o  , T, le2 and { r,' , r i  

L @ 2  in the Legendre case, for i = 1 or 2 , by ( L, , L, la2 and ( rk , rN ; 

, for i = 2 , by 
c @ 2  { SN 8 T, I @ 2  and ( r i  r N  I . 

Let denote the orthogonal subspace of ZiA,, i n  PN(Q) w i th  respect to the scalar 

product ( . , . )A ,N . I n  the sequel, we shall always choose the space of  discrete pressures M, 

such that the orthogonal project ion operator nN : M, --+ M,;,, w i t h  respect to the scalar 

product (. , . )A,N satisfies 

(11*20)  E MN I llqNll~,A,fi 6 IlnNqNIlo,A,fi ' 

Remark  11.7 : O f  course, the choice M, = M,:,, i s  the most natural  one. However, th is 

space has not good approximation propert ies since i t  can be checked that a l l  i t s  elements 

vanish i n  the corners  of  the domain Q (wh ich  i s  a p r i o r i  not the case fo r  the exact 

pressure), On the opposite, fo r  any rea l  number X ,  0 < X < 1 ,  i t  i s  possible to bu i l d  

subspaces M, which satisfy (11.20) and such that the fol lowing inclusion holds 

(11.21) P[hNl(0) c M, ([AN] denotes the integral par t  of AN) , 

which imp l ies  that these M, have good approximation propert ies. Examples of such spaces 

are given i n  [BMM, Prop. V.31 i n  the Legendre case and in [BCM, (IV.6 1 )  and ( IV.49)]  i n  

the Chebyshev case. 
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( l I . 2 4 l A  
’ 

( -  v AU, + grad p,)(x) = f(x) , x E z,” n n , 

(div uN)(x) = 0 , x E Z,” \ { S, U SA } I 

(11,25)A 

In  Section V ,  the reader w i l l  f ind practical ideas fo r  solving th is system, i n  part icular 

how to choose a convenient set of degrees of freedom for  the pressure. 

2 ’ 

[ -  v AU, + grad pN + xi =, a ~ , ” ~ u , , u , ~ / a x , ~ ~ x ~  = f(x) , x E z,” n n , 
(div u,)(x) = 0 , x E Z,” \ ( S, U SA } . 

11.4. The co l loca t ion  p W  f o r  inhomoaeneous bow-. 

In th i s  paragraph we assume that f belongs to eo(nI2 and that the boundary data g are 
such that the g, = glrJ , J E ZL/4iZ, satisfy (I: 15) and ( I .  16) but also belong to e 0 -  (I-,) 2 and 

satisfy 

(11.26) gJ(aJ> = gJ+,(a,) I J E ZL14ZL * 

We are now interested i n  the approximation of problem (l .3)(1.2). The f i r s t  idea i s  to use 

the same discrete problem ( 1 1 . 8 ) ~  as in  the homogeneous case and s imp ly  replace the 

boundary equation ( I  1 .9 )A  by 

( l1.27)A U,(X) = gJ(x) X E E,” fI TJ I J E Z/4Z . 
But i t  t u rns  out that t h i s  problem has no solution in the general case. Indeed, i f  the equation 

div u, was satisfied i n  any point of Z,” , we would derive div U, = 0 exactly. I n  part icular 

th is  would imp ly  f i ve  conditions for uN at the boundary : 

(11.28) (div u,)(a,) = 0 , J E Z/4Z , 

(11.29) C j E z / 4 z  Ir, UN n j  do = 0 

These equations solely depend upon the values of U, at the boundary, hence upon the GigJ , 

J E I L / 4 Z .  In general they are not ver i f ied,  even i f  (I. 16) holds (examples of functions g, 

satisfying our assumptions but violat ing (11.28) and (11.29) are given i n  [BCM, (V.6)] and 
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(11.3 1 ) A  

i n  [Me, Chap. 41). 

' 

v vN E pi(n)2, aA,N(uN , vN>' + b,A,N(VN t PN) 
2 A 

+ xi El (a3N(uNiuN)/axi I vN)A,N = (f,vN)A,N I 

1 qN E M2A,N t b2A,N(UN V 9,) = ' 

That i s  why we propose the fol lowing discrete problem : Find (u, , p,) in X, x M, 

satisfying (Il.22)A together w i th  the boundary conditions ( l l ,27)A , 

Note however that th is  last problem i s  not so fa r  f rom a collocation one, as the 

following proposition states it. 

Prooosit ion 11.3 : Any solution (u, , p,) of problem ( l l .22)A ( l l . 27 )A  i n  X, x M, 

satisfies the collocation equation 

(11.30)A ( -v  AU, + grad p,>(x) = f(x> , X  E z," n II , 

Remark 11.3 : B Y  noting that the space M~;,N i s  exactly the image o f  P;(II)~ by the 

divergence operator, i t  can be seen that solving the equation 
1 

v q E M,A,, 9 ~ ~ A , N ( u N  8 9) = 0 

i n  (11.22)A i s  actually equivalent to the minimizat ion of IIdiv uNIIA,, ; th i s  condition i s  

implemented i n  practice, as w i l l  be seen in Section V (cf. also [Me]). 

In the fol lowing sections, i t  w i l l  be proven that the four discrete problems are  

well-posed. 



-14- 

The convergence of  the method in  the case of homogeneous boundary conditions has 

already been thoroughly analysed [BMM][BCM], hence we only recal l  the resul ts.  Then, we 

extend them to the nonhomogeneous case. 

111.1. The case of h-aru condlt lonS, 
. .  

Problem ( l l , 8 ) A  ( l l . 9 )A  i s  actual ly analysed through i t s  var ia t ional  formulat ion 

( l I . 2 2 l A .  We recal l  the main propert ies of the b i l inear  fo rms involved in  th is  formulation, 

which are the corner-stone of the study. For i = 1 o r  2, let  us define the kernels 

( 1 1 1 .  1 )  KiA,N = { VN E p;(nl2 ; v qN P N ( ~ ) ,  biA,N(VN I 4,) = 0 } . 

Clear ly ,  KIA,N in the Legendre case and K2A,N in  both cases coincide w i t h  the subspace of 

divergence-free polynomials in P;(nI2, whi le  K,,,, in  the Chebyshev case i s  the subspace 

of polynomials vN in P;(nI2 such that div (vNw) i s  equal to 0. 

Using a well-known theorem for  saddle-point problems [B][GR, Chapter I ,  Corol lary 

4.1][T, Chap. I ,  Th. 2.11 in  the Legendre case and i t s  generalization to nonsymmetr ic  
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I 

* 

prob lems [N][BCM, Coro l la ry  11,2], we der ive f rom t h i s  proposi t ion the fol lowing 

theorems [BMM, Thm V. l][BCM,Thm V.11 .  

Jheorem 1 1 1 .  L :  Assume that hypothesis (11.20) holds. For any function f in eo(n)2 , 

the collocation approximat ion ( l I . 8 l A  ( l l . 9 ) A  to the Stokes problem ( l . 3 ) ( 1 . 4 )  has a 

uniquesolution (u, , p,) in P;( f l )2  x MN, 

The e r r o r  estimates have been proven respectively in [BMM, Thm V. 1 and V.21 in the 

Legendre case and i n  [BCM, Thm V.2 and V.31 i n  the Chebyshev case. Note that the main 

arguments of the proofs w i l l  be recalled i n  the fol lowing subsection, in order to study the 

in hom ogeneous case. 

1- : Assume that hypothesis (11.20) holds, that the solution (u,p) of the 

Stokes problem ( l .3)(1.4) is such fhat u belongs to H i ( ~ 2 ) ~  for a real  number s 2 1 , 

and the data f belong to H:(nI2 for a real number u > 1 . Then the solution (u, , p,) of 

problem ( l l .8)A ( l l .9)A satisfies 
1+2a-u 

(111.6) I I u - u N I I , , A , ~ < c (  N1-SIl~l ls,A,n + N  [If IIu,A,n ) 

for a constant c independent of  N. 

Jheorem 111.3 :Assume that hypotheses (11.20) and (11.21) holdand that thesolut ion 

(u,p> of the Stokes problem (l .3)(1.4) belongs to Hi(n12 x H;-’(fl) for a rea l  number 

s 2 1 , and the data f belong to H;(f i I2 for a rea l  number u > 1 .  Then the solution 

(u, , pN) ofproblem (I l.8)A ( 1  I ,9),., satisfies 
+ N ~ + ~ c K - u  

(111.7) I IP -PNI~o ,A ,~  < c {  N3-’(IIUIIs,A,n llP&-1,A,Q 111 II,,A,* 1 
for a constant c independent of  N. 

n)* x MN 

I .  I to 111.3 

are s t i l l  valid. Furthermore, by  reading the proof of [BMM][BCM], i t  i s  easy to  see that the 

estimates (111.6) and (111.7) can be replaced respectively by 

( 1 1 1.9) IIU-UN II 1,A.n G c N’-’ IIuII,,A,~ 1 

and 

( 1 1 1 .  10) I IP-PNI I~,~,Q ,< c N3-’ ( /lulls,A,n ’ llP&-1,A,fl ’ 
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This w i l l  be used i n  the fol lowing section. 

J 11.7. The case of W v x r ~ ~ a e n e o u s  boundaru condl t ionsL 

Our purpose is  now to study the discrete problem (lI.22lA (lI.27lA . Since we needan 

element i n  the space of t r i a l  functions X, that satisfies, i n  a discrete sense, the boundary 

condit ion (1.21, we state the fol lowing l i f t i n g  resu l t  that can be derived f rom [BMl, 

Prop. V .  1 1. 

m m a  I I I .  1 : There exists an operator Q; from the subspace o f  a l l  polynomials 

(PN = ( QNJ ) J ~ n / 4 n  in n J j Z / 4 n  pN(rJ) satisfying 

(111.1 I >  $,,(a,> = $~ , j+ f (aJ)  r J E z/4z t 

into P,(Q) such that, for any such polynomial 9, , 

( i 1 1 . 1 2 )  Q,A((P,) = gNJ on rJ , J E z/4z . 
Moreover the following estimate is satisfied 

"-a 
( 1 1 1 .  13) ilQ~(9,)l/l,A,fi Q c L J  E 1/41 iiq,J1t0,/4,rJ ' 

Sketch of  p roo f  : From [BM 1 ,  Prop. V .  1 1 ,  we der ive that there exists an operator Q$ 

which satisfies (I I I .  12) and such that one has 

~ ~ Q ~ ( q N ) ~ ~ , , A , ~  6 ( xJ~z/42 IIgNJIlo,A,rJ ' N-2a z J ~ Z / 4 2  IqNJ(aJ)l . 

Then, estimate (111.13) follows f rom the previous l ine  and the inverse inequality [a, (2 .4 )  

and (3.211, va l id  fo r  any polynomial gN in P,,(A), 

l l ~ N l l ~ ~ ( ~ ]  ~ ~ ~ N ~ ~ O , ~ , ~  ' 

The previous resu l t  allows us to check that the discrete problem ( l l .22)A ( l l ,27)A i s  

we1 1- posed. 

Jheorem 111.4: Assume that hypothesis (11.20) holds. f o r  any function f in eo(Q)2 ,  
the collocation approximation (lI.22lA (11.27)A of the Stokes problem (l.3)(1.2) has a 

unique solution (u, , p,) in X, x M, . 

A A Proof  : I f  we choose u,,~ equal to the image of ( i, g, ) jEn/4n by  the operator Q, , the 

polynomial  6 ,  = u, - u,,~ belongs to P i ( C l l 2 .  Then the pa i r  (u, , p,) i s  a solution of 

(11,22)A (11.27)A i f andon ly  i f  t hepa i r  (b, , p,) satisf ies: 
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Next, we w i l l  study the approximation of divergence-free functions by  divergence- 

f ree  polynomials, thus generalizing the resu l t  of [SV]  to the case of non homogeneous 

boundary conditions. Let us set 

(111.15) 

LmmdL.2 :  There exists an operator RNA f rom K A ( Q )  into P,( f l I2  fl K,(fl) such 

that the following estimate is satisfied for any real number s z 3 : for any function w in  

K,(fl) = [ w E H:(fll2 ; div w = 0 in fl } . 

K A ( f l )  n H;(o)~, 

( 1 1 1 .  16) ( ( W - R i W l 1 1 , ~ p  <CN1-sllwlls,~,n 
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Of course, other divergence-free polynomials approximations of divergence-free 

functions in  HA(n)2 can be built. However, note that, fo r  any function w in  K A ( n ) ,  the 

operator R; satisfies 

(111.20) ($w)(aj)  = W(aj) 1 J E Z/4Z a 

Moreover] i t  has the fol lowing useful property.  

C o r o l l a r u  I I I .  L : The operator R; satisfies the fol lowing estimate for any real number 

7: z 2 : for any function w i n  K A ( n )  such that the trace wlrJ belongs to Hi( rJ )2  , 

(1l1.21) IIWlrJ-RNAWlrJIlo,A,rJ N-TllWlrJIIT,A,rJ ' 

We are going to  introduce a s l ight ly dif ferent approximation to the Stokes problem 

(l,3)(1.2)] that satisfiesconditions (1.16) and (11.26). I n  a l l  that follows, weassume that, 

if (u,p) i s  the solution of (1.3)(1.2), the function u belongs to H;(nI2; then, we set 

(111.22) zN-1 = R,A-,U 9 
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( i i l .23)A . v v E H:,,(cI)~, aA(ii,v) + (v , grad 6 l A  (f,vJA , 

V q E L i ( O ) ,  (div G , q), = 0 , 

I 

(111*25)A 

m a  111.3: Assume that the solution (u,p) of the5tokesproblem ( l ,3 ) (1 ,2 )  is such 

that u belongs to H i ( n ) 2  for a real number s 2 3.  The following estimate is satisfied 

(111.27) Ilu-^ulll,A,fi < C N1-'IIUIIS,~,fi 

for a constant c > 0 independent of N. 

' v VN E p i ( n ) 2 ,  aA,N(GN VN) + blA,N(VN I 6,) = (ftvN)A,N 

I qN E M * i , N  t b,A,N(6N I = I 

I 

Proof  : Since the pa i r  u-6 i s  the solution of a Stokes problem w i t h  n u l l  body forces and 

boundary data equal to Ulr, - ~ ~ - ~ l ~ ~  , J E Z/4Z, i t  fol lows f rom the s tab i l i t y  estimate 

(1.22) that 

ll~-iIli,A,n c Em42 I I U ~ ~ J - Z N - ~ J T ~ I I ( ~ - ~ ) / Z , A , T J  * 

Due to the trace theorem [LM, Chap. 1 , Th. 8.3][BM 1 , Thm 

Ilu-6111,A,fl 6 IIu-zN-l llI,A,fi ' 

Then, we deduce the lemma from Lemma 111.2. 

1.21, that impl ies 

S im i la r l y  we can obtain an e r r o r  bound between uN ar.J GN . 
m a  111.4: Assume that the boundary data gJ , J E z / ~ z ,  belong to tii(rJ)2 for a 

real  number T 2 2. The following estimate is satisfied 
7/2-r 

(111.28) IIUN-6NII,,A.fl G c N  C J E Z / ~ Z  llgJll~,A,rJ 

for a constant c > 0 independent of N. 
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P r o o f  : I t  fol lows f r o m  problems ( l l . 2 2 ) A  ( l I . 2 7 l A  and (111.25)A ( l l l . 2 6 ) A  that the 

polynomial ~ ~ - 6 ,  i s  the collocation approximation of a Stokes problem w i t h  nul l  body 

forces and boundary data equal to i,gJ - ~ ~ - ~ l ~ ~  , J E ZL/4Z. Let w,,~ denote the image of 

( i,gJ - zN-l~rJ )JEz14z by the operator a,". Setting wN = uN - 6,  - w ~ , ~  and rN = pN - 6, , 
we see that the p a i r  (w, , r,) i s  the only solution in  P;(n)2 x M, of 

A 

A 

(111.29)A v VN f p;(n)*, I VN) blA,N(VN r r,) = - aA,N(WN,b I VN) t 

1 I q, E M,A,N I b2A,N(WN 19,) = - b2A,N(WN,b $4,) ' 

Using [BCM, Corol lary 11.21 together w i t h  Proposition I I I. 1 , we obtain 

IIWNII1,A,n N2 IIWN,bII1,A,n I 

so that, using Lemma I I I. 1 , 
2 l a  . A  

~ ~ u N - 6 N ~ ~ l , A , ~  - ZJE2/42 ( IIgJ-'NgJIIO,A,rJ ' IIUIrJ-ZN-lIrJIIO.A,rJ ' 

The lemma fo l lows f r o m  Coro l la ry  1 1 1 . 1  and f r o m  the fo l low ing  estimate f o r  the 

interpolat ion e r r o r  [CQl Thms 3.1 and 3.21, va l id  fo r  any rea l  number s > 1 / 2  : 

(111.30) Ilq-CiqIIo,A,A Q c N1'2+a-3 119 ~ , A , A  9 

Final ly ,  in order to get now an e r r o r  bound between 6 and 6 ,  , we note that problem 

(111.25)A (111.26)~ i s  a discrete approximation of problem (111.23)A ( l l l . 2 4 ) A .  That 

allows us to derive the following estimate. 

h m a  111.5 :Assume that the solution (u,p> of theStokesprob1em ( l .3 ) ( Is2)  belongs 

to H:(nI2 x H i - ' ( n )  for a real number s k 3 , that the data f belong to H i ( n ) 2  for a 

real  number u > 1 and that the boundary data gJ , J E Z L / ~ Z L ,  belong to H:(rJI2 for a 

real number 7: 2 2. The following estimate is satisfied 
1 +2a-o (111.31) 1/6-6~111,A,n 6 c (  N 1 - s ~ ~ ~ ~ ~ , , ~ , ~  + N Ilfllv,A,n + '-' EJ E 2/42 IIgJ ~ , A , T J  ) 

for ocunstant c > 0 independent of  N. 
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c 

( I  11.34) 

The more convenient here i s  to choose vN-, = wN = 0. So i t  remains to estimate Ilu* ((1,A,n and 

the last term. 

1 )  We have 

IIU*II1,A,n g Il'-Glll,A,n + IIU"N-l IIl,A,n 

so that, b y  Lemmas 111.2 and 111.3, 

( 1  11.35) IIU* II1,A.n ( "-' Ilulls*A,n + '-' CJ En/4P llgJIlr,A,rJ 1 .  
2 )  We reca l l  [CQl , 831  that the scalar product (.,.)A induces a norm on P,(fl) which i s  

equivalent to I(.Ilo,A,n , Hence, choosing fN-l in.PN-l(Q)2, we obtain for  any zN in P i ( f l ) *  
A ( f  , z ~ ) ~  - ( f  ,zN)A,N = ( f  - fN-1 1 ZN )A - (3, f - 1,- 1 8 2N)A.N 

G ( )If - 'N-1 Ilo,A,n ' 11 - 3i Ilo,A,n ) 11 'N Il0,A.n ' 

Let u s  reca l l  that the orthogonal project ion n i  f rom L 2 ( f l )  onto P N ( f l )  satisf ies the 

fol lowing estimate for  any 9 in H i ( f l ) ,  s z 0, 

Taking fo r  instance f N - l  = ni-l f and noting that 3; i s  equal to G," o c," , we der ive f rom 

(111.30) and (111.36) 

( I I 1.36) II 9 - i ' P  Ilo,~,n 6 C N-' II 'P II,,A,~ . 

1t2a-a 
(111.37) ( f  , Z N ) A - ( ~  ,ZN)A,N<CN llfII~,A,n llZN II0,A.n ' 

Final ly,  estimate (111.31) fol lows f rom ( l I l .34) ,  (111.35) and (111.37). 

From Lemmas 111.3 to 111.5, we derive the main e r r o r  estimate. 

Worem 111.5 : Assume that hypothesis (11.20) holds and that the solution (u,p) of  the 

Stokes problem (l.3)(1,2) is such that u belongs to H i ( f l ) 2  for a real number s 3 3 , 

that the data f belong to H i ( ~ 2 ) ~  for a real number (I > 1 and that the boundary data QJ , 



-22 - 

J E Z / 4 Z  , belong to H i ( r J ) 2  for  a real number 7: 2 2. Then, the solution (u, , p,) of 

problem ( l l . 2 2 l A  (I I.27)A satisfies 
+ N1+2a-u 

IIu-uN II,,A,n G ( "-' IIUIIs,A,n 11 IIu,A,n 

) 
+ N7/2-r  CJ E 2/48 llgJ lli,A,rj 

for a constant c > 0 independent o f  N. 

We conclude w i t h  an estimate for  the pressure. 

U m r e m  IlLh : Assume that hypotheses (I 1.20) and ( I  1.2 1 ) hold and that the solution 

(u ,p)  of the Stokes problem ( l , 3 ) (1 .2 )  belongs to H;(flI2 x H:- '( f l ) for a real  number 

s 3 ,  that the data f belong to H i ( f l ) 2 f o r  a real number u > 1 and that the boundary data 

gJ , J E z / ~ z ,  belong to H i ( r J ) 2  for a real number T 2 2. Then, the solution (u, , p,) 

o f  problem ( I I. 221, ( I I ,  2 7 I A  satisfies 

(111.39) IIP-PN Ilo,A,n d { N3-s ( Il'll,,A,n + I IPl ls-t ,A,n 1 

for a constant c > 0 independent of  N. 
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( I V .  1 )  

The aim of t h i s  section i s  to obtain, for  the discrete problems ( 1 1 . 1  6), (11.9), and 

( I  1.3 1 1, ( I  1.271, , convergence resul ts s im i la r  to those which were proven i n  the l inear 

case. We begin b y  describing the main tools of  the analysis, together w i t h  some propert ies 

of the exact equations. Then we establish some technical lemmas. This allows us to prove the 

convergence and to give e r r o r  estimates fo r  the velocity i n  both the homogeneous and 

inhomogeneous cases. Final ly,  e r r o r  bounds are also derived fo r  the pressure. 

= IIFN(u;) l l Z ~  Y N  = ll(DFN(uG))-' I I z ( Z N , Z ~ )  

Let us precise i n  what framework we shall apply th i s  theorem to the Navier-Stokes 

equations. We begin w i t h  the continuous problem. Let 8, denote the subspace of a l l  functions 

g in H1: satisfying ( 1 .  16) and (11.26). Wi th  the Stokes problem, we associate the 

operators TA and 7, respectively f rom H , ' ( Q 1 2  into HL,o(Q)2  and f rom H , ' ( Q 1 2  x B, into 

HL(n)* : fo r  any f i n  H , ' ( 0 I 2 ,  T,f i s  equal to the function u, where (u,p) i s  the solution of 

(1,3)(1,4) in HA,,(Q)2 x L E , o ( Q ) ;  for  any (f,g) in H , ' ( Q l 2  x B, , ?,(f,g) i s  equal to the 

function u, where (u,p) i s  the solution of (1,3)(1,2) in HL(nI2 x Li,o(f l ) .  O f  course, f o r  

any f in ~ , ' ( n ) ~ ,  T,(f,o) coincides w i t h  TAf. 

Next, we consider the nonlinear term. We f i x  a function f i n  H,'(nl2 and a function g 

i n  B, , and we define the fol lowing mappings 
2 

(IV.3) G(w) = c. I = 1  a(wiw)/i3xi - f and @w) = ( G(w) , - g . 
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Clearly, the Navier-Stokes equations (I. t ) ( l . 4 )  have the following equivalent formulation : 

Finda function u in H:,o(fl)2 such that 

( Iv .4 )A u + TAG(u) = 0 , 

The Navier-Stokes equations (I .  1 l (1.2) have the fol lowing equivalent formulation : Find a 

function u in H A ( f l ) 2  such that 

(IV.51, u t ~,E(u) = 0 . 

To check that these problems are well-posed, we need the 

b m a  I V .  I-: For any f in H,'(fll2, the mapping G is ofc lass e- from H ' ( f l 1 2  into 

H , ' ( c I ) ~  and f rom H,'JQ)~ into H , ' ( o ) ~ .  Furthermore,  for any w in H;(CI)~, the 

operator DG(w)is compact f rom H:(O12 into H,'(fl)*. 

Proof  : Since the space H A ( f l )  is  contained i n  H ' ( f i ) ,  due to (1.7) and (I. 141, i t  suffices to 

prove that the mapping G i s  of class e" f rom H ' ( f l ) 2  into H ; ' ( f l 1 2  . For any u and w i n  

H ' ( f l > 2 ,  we have 
2 v v E H;,,(CI)~, I xi E l  jn (a(uiwvaxi> VU dx 1 = I jn (uiW) ( a ( v w a x i >  dx I 

Since the mapping : q -+ ( In (grad ( q w ) I 2  U-' dx )'I2 i s  a norm on H$,(fl) equivalent to 

theusual one [ B M l ,  Lemma111.2], weder ive 

( IV.6)  V v E H:,,(flI2, I xi z 1  In (a(uiwHl)/axi) v u  dx < C xi :1 IIUi Wjllo,w,n Ilvlll,,,n I 

We reca l l  [LM,  Thm 4 . l ] [ B M I I  Lemma 1 1 1 . 1 ]  the imbedding of H ' l 2 ( f l )  in to  L i ( C I ) .  

Moreover, using the Calder6n extension theorem [ A ,  Thm 4 .321  together w i t h  [G ,  Thm 

1 .4 .4 .21 ,  we know that the mapping : ( q , ~ # )  + qq i s  b i l i nea r  continuous f rom 

H ' ( f l )  x H ' ( f l )  into H1- ' ( f l )  fo r  any E > 0. Hence we have for 0 < E 4 1 /2 

2 2 

(IV.7) I l ~ i ~ j l l o , w , n  G ~ l l ~ i ~ j 1 1 1 / 2 , n  C' IIUiWjIl1-c,n 6 c'' IIUiIl1,n IIWjIl1,n 

From (IV.6) and (IV.71, we obtain 
2 

V v E H A , , ( f l 1 2 ,  I Ci .' jn (a(uiw)/axi) v u  dx I d  CIlulll,n Ilwlll,n Ilvlll.,,n . 
Then, i t  i s  an easy matter to derive f rom (IV.3) that G i s  of class C" f rom H ' ( f l 1 2  into 

H; ' (CI )~ .  The compactness of DG(w) from H ' ( f l ) 2  into H ; ' ( f l 1 2 ,  follows f rom the previous 

l ines and f rom the compactness of the imbedding H' - ' ( f l )  c H ' / * ( f l ) ,  0 d E < 1 /2. 

C o r o l l a r u  I V . l  : For any f in H ; ' ( f l 1 2  ,prob lem ( I . l ) ( l . 4 )  has at least a solution 

(u ,p> in  H : , ~ ( O ) ~  x L~,,(oI . For any ( f , g ) i n  H , ' ( Q ) ~  x B, , problem ( I .  1 )(1.2) has at 

least a solution (u,p) in ~ : ( n ) ~  x ~;,,(n) . 
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Proo f  : I n  the Legendre case, the coro l la ry  states a well-known resu l t  [ G R ,  Chapter IV, 

Thms 2.1 and 2.31. Next, i n  the Chebyshev case, since the space H;l(n) i s  contained i n  

H - ' ( f l )  and the space B, i s  contained i n  B, , there exists at least a p a i r  (u,p) i n  

H ' ( Q ) 2  x L i ( f l )  solution of problem ( 1 . 1  )(1.4) (resp. (I. 1 ) ( l .2 ) ) .  From Lemma I V .  1 , G(u) 

i s  an element of H,'(fl)'. Let (u ' ,p ' )  be the solution i n  H L ( f l ) 2  x Li,,(fl) of the Stokes 

problem w i t h  data - G(u). Then, both (u,p) and (u',p') are solutions in H;(flI2 x L 2 ( n )  of 

the Stokes problem w i t h  data - G(u) ;  the uniqueness of the solution of the Stokes problem 

imp l ies  that u and u' coincide, and that p-p' i s  constant, equal to ( 1 / n )  In p(x) w(x)  d x .  We 

see that (u,p') belongs in fact to H:(flI2 x Li,,(fl) and i s  a solution of (I. 1 l(1.4) (resp. 

(I. 1 ) ( l .2)) .  

We state a last property of the continuous problem. I t  i s  interesting here to note that, 

since the second argument in 6 i s  constant, the operators 1 + T,DG(u) and 1 + TAD6(u) 

coincide on H:,o(Q)2. 

m a  IV.7 : For any real number q > 2 ,  there exists a constant c(q,v) such that , i f  a 

solution (u,p) ofproblem (I. 1 )(1.4) (resp. (I. ll(1.2) ) satisfies 

(IV.8) IIuIILqn) < C(q,v) , 
the operator 1 + T,DG(u)is an isomorphism of  HA,,(n12 ( resp .  the operator 

1 t TAD6(u) is an isomorphism of  H:(n)2).. 

P r o o f  : By the compactness resu l t  of Lemma I V .  1 ,  the operator 1 + T,DG(u) i s  an 

isomorphism of HA,,(fl)2 and the operator 1 t TADk(u) i s  an isomorphism of HA(Q12 i f  

and only i f  they are  in ject ive,  i.e. the only solution ( w , r )  in HA,,(fl12 x L;,,(fl) of the 

fol lowing l inearized Stokes problem 

V v E H:,,(fl12, a,(w,v) t ( V  , grad r), + (DG(u1.w , v), = 0 , l v q E L i ( f l ) ,  (div w , q)A = 0 , 
i s  (0,O). In the Legendre case, the form aL i s  c lear ly e l l i p t i c  on H;(flI2; in the Chebyshev 

case, i t  i s  proven [BCM, Prop. 111.2] that, for  any divergence-free function w i n  HA,,(n)2, 
there exists v i n  H;,,(CI)~, satisfying div ( v u )  = 0, such that 

aJw,v) 2 c IlWlll,,,* IlVlIl,,,~ 

v IIwII,,A,n 6 c Ci II Ui wj  llo,A,n 8 

' 

These propert ies, together w i t h  (IV.6) in the Chebyshev case, give 
2 

Next, in the Legendrecase, using the imbedding of "(0) into any Ls ( f l ) ,  s < +oo, we have 

at once 
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In the sequel, we shall always assume that the data f belong to a space H;(flI2 fo r  a 

rea l  number 0 > 1 and that the boundary data gJ , J E Z/4Z, belong to a space H;(rJ)2 for  

a rea l  number 7 2 2 and satisfy (1.16) and (11.26). We consider a solution u of the 

Navier-Stokes equations ( I .  1 l(1.4) (resp. (I. 1 l (1 .2 ) )  which i s  nonsingular i n  the following 

sense : the operator 1 + T,DG(u) i s  an isomorphism of H:,,(fl12 (resp. the operator 

1 + i,D&u) i s  an isomorphism of H:(fl12); by v i r t u e  of Lemma IV.2,  such solutions exist 

for  f and g smal l  enough ! Even in the standard Sobolev spaces, regu la r i t y  resul ts of the 

solut ion (u,p) as a consequence of the regu la r i t y  of f are not easy to der ive [ G ,  87.31, 

whence we shal l  assume in the sequel that there exists a real  number s B 1 ( s  2 3 in the 

case of non-homogeneous boundary conditions) such that the velocity u belongs to H i ( f l ) 2 .  

We t u r n  now to thediscreteproblems~11.16), (1i.g)A and(l l .31), (11,271, . A s  for  

the exact Navier-Stokes equations, we must define the operators TA,N and ?A,N respectively 

f rom H i ' ( ~ 3 ) ~  in to  P;(nl2 and f rom H;'(n12 x 8, into PN(nI2 : for  any f in H,'(LI)~, 

T,,,f i s  equal to  the function uN , where (uN , pN) i s  the solution of problem ( I  I l.8), i n  

P ; ( f I l 2  x M, ; fo r  any ( f ,g) i n  H,'(n12 x 8, , TA,N(f,g) i s  equal to the function uN , 

where (uN , pN) i s  the solution of problem ( I I I .~o ) ,  (11.27)A i n  pN(n12 x MN . AS in the 

continuous case, for  f i n  H,'(fl12, T,,,f and ?A,N(f,O) coincide. 

Next, we consider the nonlinear te rm.  Due to ( 1 1 .  171, , we need the fol lowing 

operator S: , defined f rom (?'(a) into P,(fl) by : for  any function f in (?'(a), S t f  satisfies 

( IV.9)  v 9 E PN(n), (si f ,q)A = (fsq)A,N * 

Then, we set fo r  any function w in 

( IV .  I O )  G,,,(w) x i  =, s,A(a(3,A(wiw))/axi - 1) and E A , N ( ~ )  = ( G,,~(w) , - g 

This definit ion i s  equivalent to 

2 . 

2 
( IV .  1 1 v VN E XN t (GA,N(w),vN)A = ( X i  a(3,A(wiw))/axi I vN1A.N - (f,vN)A,N a 

Fina l l y ,  problem (II.16), ( I l .9) ,  has the fol lowing equivalent formulation : F i n d a  

polynomial uN in P;(nI2 such that 
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(IV. I 5) 
' 

v 9 E H:,~(O) n H;(o), 

I Iq -n i ,Oql l l ,A , f i  ' IIq-nNA,oqllO,A,n Q N ' - ' ~ ~ ~ ~ ~ ~ , A , ~  ' 

- 
We begin by stating some resul ts about the l inear operators TA,, and fA,, . 

P r o ~ o s r n n  I V .  1 : For any f in H,'(fl)2, the operator TA,N satisfies 

and 

( I V .  18) 1imN ~ oo ll(TA-TA,N)fll1,A,-, = 0 , 

Moreover, i f  the solution TAf belongs to Hi(O12 for a real number s 3 1 , i t  satisfies the 

estimate 
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P r o o f  : B y  Proposit ion 1 1 1 . 1  , we obtain at once 

which i s  ( I V .  17). Next, due to the definit ion of the operators TA,., and , the estimates. 

(IV.19) and (IV.20) havealready been stated in  (111.9) a n d ( l l l . 4 1 )  respectively. F ina l ly ,  

( I V .  18) holds by  classical arguments using ( I V .  19) and the density of a(n) into 

In order to estimate the nonlinear term,  we need the following lemma. 

m a  lV.3 : for any real number E > 0 ,  there exists a constant c such that 

@,and tpN i n  PN(n), the following estimate is satisfied 

i:,o(n). 

for any 
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+ ~ ~ ~ N I I s , A , ~  [In;’ q N  l l l + t / 2 , A , 0 1  

Consequently, we derive the estimate of ll(ld-3;) (qNqN)IIO,A,n as an easy consequence of the 

inverse inequality [ C a t  , Lemmas 2.1 and 2.41, val id fo r  any integer m and any real  number 

r ,  0 6 m ~ r ,  

( IV.23) V V N  f P N ( f i )  , I!qN II,,A,~ C N2(r-m) I I V N  I I ~ , A , ~  
The term I l ( l d - ~ , A _ l ) ( q N V N ) I l o , A , n  i s  estimated exactly in the same way. 

We can now state the following result.  

: For N large enough , the operator DFN(u;) = 1 t TA,N DG,,,(u;) i s  

an isomorphism of P;l(QI2,  and yN is bounded by a constant y independent of N. For N 
large enough , the operator DPN(u;) = 1 + TA,, D6A,N(~; )  is an isomorphism of P N ( f i  ) 2 ,  

and i,, is bounded by a constant .d independent of N. 

Proof  : We w r i t e  DF,(U;> and DFN(u,’) in the form 

( IV .24)  DFN(U,”)= [1 + TA DG(U)] - (TA-TA,N>DG(U) - TA,N(DG(U)-DG(U;)) 

- TA,N (DG-DG,,,)(u,*) , 

and (since the second arguments i n  6 and GA,N are constant) 

( IV.25) DFN(u,”)= [l t TA D ~ ( u ) ]  - (TA-TA,,)DG(u) - TA,,(DG(u)-DG(U;)) 

- TA,N(DG-DGA,N)(~Nf) . 

Since the operator 1 + T,DG(u) i s  an isomorphism of HA,,(fi12 and the operator 

1 t TAD6(u)  i s  an isomorphism of H:(CI)2, there exists a constant co independent of N such 

that, fo r  any wN i n  P;l(CI)2, 

( IV.26) 11 [1 + TADG(U)]*WN / I , , A , ~  2 co IIi,A,n s 

and, for any wN in PN(n> , 2 

( IV.27) 11 [ I  t ~AD&(U)] .WN II l ,A,n 2 cO IlW, I I l ,A ,n  * 

It remains to bound the three other terms i n  (IV.24) and (IV.25). Let W, be any Polynomial 

i n  X, I 

1 ) I t  fol lows from (IV. 18) and f rom the compactness of the operator D G ( d  (see Lemma 

I V .  1 ) that 

1imN -t oo II(TA-TA,N)DG(u)II~(H:(*~~,HA(*)~) 0 * 

Hence, for  N large enough, one has 

( IV.28) II(TA-TA,,)DG(U).WNIIl,~,n 6 (C0/4)  I I W N I I ~ , A , ~  . 

2) It fol lows f rom (IV. 17) and f rom the cont inui ty of the operator DG (see Lemma I V .  1 
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Proof  : Let wN be any element i n  XN . We have 

I I  TA ,N (DGA ,N (wN Ilze~ x N ,xN) 

6 IITA,N (DG(wN-u;))II~(XN,XN) t I I T ~ , ~  (DG-DG,,~)(w~-u*) N I1 ~ ( X N , X N )  ' 

Using (IV. 17) and the continuity of the operator DG (see Lemma IV. 1 yields that 
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h m m a  IVA: The constants cN and ZN satisfy 

( IV .32 )  EN < C(U) N'-' + C(f)  N1*"-' and SN 6 C(U) N1-' + C( f )  N1+2a-u + c(g) N7'2-r , 
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Jheorem IV.3 : Assume that hypothesis (11.20) holds and that there exists a solution 

(u,p) of the Navier-Stokes equations (I. 1 I (1 .2)  such that the operator 1 t TAD&u) is an 

isomorphism of H L ( c J ) ~  ; assume moreover that u belongs to H'(n>2 for  a real number 

Using the definit ions (IV.3) and (IV. 10) of G and GA,N , we have for any vN in  P;(nI2, in  the 

Legendre case, 

We can now prove the main results of th is  section. 

Jheorem IV 7 : Assume that hypothesis ( I  1.20) holds and that there exists a solution 

(u ,p )  of the Navier-Stokes equations (I .  1 )(1.4) such that the operator 1 t TADG(u) is an 

isomorphism of HL,o(CJ)2 ; assume moreover that u belongs to H'(fl12 for a real number 

s > 1 and that the data f belong to HL(n12 for a real number u > 1 I For N large enough, 

problem ( 1 1 .  I 61, ( t f .9 )A admits a solution (u, , p,) i n  ~ ; ( n ) ~  x MN . Moreover, i t  

satisfies 
1 +2a-u ( IV .38 )  IIu-uNIII,A,O d C(U) N'-' + C(f) N 

for constants c(u) and c(f) independent of N. 
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I 

I 

s B 3 , that the data f belong to H:(n)2 for a real number CI > 1 and that the boundary 

data g, , J E Z / 4 Z  , belong to H;(r,l2 for a real number T > 7 /2 .  For N large enough, 

problem (11.31 ) A  ( l I . 2 7 l A  admits a solution (u, , pN) i n  P,(nI2 x M, . Moreover, i t  

satisfies 

(IV.39) I I u - u N I I ~ , A , ~  < C(U) N'-' t C(f) N1'2a-u + C(g> N7'2-r . 
for  constants c(u> , c(f) and c(g)independent of N. 

P r o o f :  Using Proposit ion IV.2 and Lemmas IV.4 and IV.5, we notice that 2 y N  AN(2yN€,) 

and 2 i N  h N ( 2 i N E N )  are bounded respectively by c E, and c EN ; consequently, the 

assumptions of Theorem I V .  1 are satisfied for N large enough. Hence, there exists a constant 

c > 0 independent of N such that, for each 7) < c, there i s  a unique solution u, of ( I V .  121, i n  

the bal l  S, { w, E pi(n12 ; IIW,-U; I I ~ , ~ , ~  G -q 1 (resp. a unique solution u, of (IV. 131, 

i n  the ba l l  3, = ( wN E P N ( f l ) 2  ; I I W , - U ; I I ~ , ~ , ~  G 1) )). Next, f rom (IV.21, we derive the 

estimate 

IIuN-uN* II1,A.n d IIFN(';) IIl,A,n (resp. IIu,-u: II1,A.n G c IIPN(uN+) III,A,n) 

which, .together w i t h  Lemma IV.5, yields ( IV.38) and (IV.39). 

Next, by  Proposition II I. 1 , there exists a unique pN in MN such that 

v VN f pi (n)* ,  blA,N(vN I PN) = - I vN) - (GA,N(UN) I ',)A 

and the pa i r  (u, , p,) i s  a solut ion o f  the,corresponding problem ( l l . 16 )A  ( i l . 9 ) A  o r  

(11.31)A (11.27)A, 

R e m a r k  I V . 1  : The e r r o r  bounds we obtain a re  exactly the same as fo r  the Stokes 

problem ; in par t i cu la r ,  the resu l t  i s  s t i l l  optimal w i t h  respect to the regu la r i t y  of the 

solution (and also of the data f when Chebyshev approximation i s  used). 

lV.4. F r r o r  es t imates  f o r  the Dressure, 

In order to state an e r r o r  bound for the pressure, we need a lemma. 

k m m a  IV.6 : The approximate velocity u,, as defined in  Theorem IV.2, satisfies 

The approximate velocity uN, as defined in Theorem IV.3, satisfies 

6 C(U) N'-' + c(f) N1+2a-u t c(g) N7'2-r . (G(  U) -GA,,(uN) 'vN ) A  
(IV.41) sup 

VN E pi(n)2 II'N lll,A,n 

P r o o f  : Let vN be any element i n  P ~ ( C I ) ~ .  We consider only the case o f  homogeneous 
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U u w e r n  IV.4: Assume that hypotheses (11.20) and (11.2 1 )  hold and that there exists 

a solution (u ,p )  of the Navier-Stokes equations ( I .  1 l ( 1 . 4 )  such that the operator 

1 + TDG(u) is an isomorphism of  HA,o( f l )2  ; assume moreover that i t  belongs to 

Hi ( f l12  x Hi- ' ( f l ) for  a real number s > 1 and that the data f belong to Hi ( f l )2 for  a real 

number u > 1 .  Then, thesolution (uN , pN) ofproblem ( l l , 1 6 ) A  ( l l . 9 ) A  satisfies 
3+2a-o 

( I V . 4 2 )  IIP-PN IIo,A,n Q C(U,P) N3-' + C(f) N 

for constants c(u,p) and c(f) independent of  N. 

_Theorem IV.5 : Assume that hypotheses (11.20) and (11.21) hold and that there exists 

a solution (u,p) o f  the Navier-Stokes equations (I. 1 l(1.2) such that the operator 

1 + ?DG(u)  i s  an isomorphism of  H : ( f l I 2  ; assume moreover that i t  belongs to 

Hi(n)2 x H i - ' ( O ) f o r  a rea l  number s 2 3 ,  that the data f belong to Hi(n)2for a real  

number u > 1 and that the boundary data g,, J E iZ/4Z, belong to H;(r,l2for a real 

number T > 7 /2 .  Then, thesolution (uN , pN) ofproblem ( l l . 3 1 ) A  ( l l . 2 7 ) A  satisfies 

+ c(g) N'"'-' 3+2a-u 
( IV .43)  IlP-PN IIo,A,n < C(U,P) N3-' + C(f) N 
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for constants c(u,p) , c(f) and c(g) independent of N. 

Let vN be any element in P i ( 0 l 2 .  By the uni form continuity of aA,, , we have 

aA,,(u,-G, I vN) < c IIuN-ii, Ill,A,n IIv, II1,A.n 

6 c ( Ilu-iN II1,A.n + IIu-uN I I l ,A,n ) II1,A.n I 

so that one can bound th is  term f rom (IV.38) o r  (IV.39) and (IV.45). Using th i s  estimate 

and Lemma IV.6 in (IV.47) yields 

( iV.48) IIpN-PNIlo,A,n < C(U) N3-’ + C(f> N 3+2a-u 

3 - 5  + c(f) ~ 3 + 2 o ( - U  + c(g) ~ 1 1 / 2 - T )  (resp. I I  PN-PN Il0,A.n G C(U) N , 
which, together w i t h  (IV.461, gives (IV.42) and (IV.43). 

That ends the theoretical resu l ts  which can be proven for  both the Legendre and 

Chebyshev approximations of the Navier-Stokes equations. I t  remains to apply th is  method 

to rea l  problems, as w i l l  be done in  the next section. 
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V .  Resolut ion a laor i thm and numer ica l  resul ts ,  

I n  t h i s  section, we describe the resolut ion a lgor i thm we use fo r  numer ica l  

applications. I t  has been proposed f i r s t  by Y .  MORCHOISNE [Mo l  and i s  aimed at solving the 

t i  m e-dependen t Nav i e r  -Stokes equations 

( V . 1 )  I a u / 9 t - v A u + g r a d p + ( u . V ) u = f  i n n x ( 0 , T )  , T > O  , 

w i t h  i n i t i a l  condition 4 0 )  = uo i n  n. But i t  can also be used to compute stationary cases as 

i t  w i l l  be shown i n  the following. As far as time-dependent problems are concerned, t ime 

discretization i s  achieved w i th  the help of a f in i te  difference scheme. Whi le  the convection 

te rm i s  handled exp l i c i t l y  by an Adams-Bashforth approximation, the di f fusive term i s  

imp l i c i t l y  treated i n  order to ensure stabi l i ty. 

I d i v u - 0  i n n x ( 0 , T )  , 

Let us introduce a f ixed t ime step 61 > 0. At  each t ime (n+  1 )  6t, n B 0, we compute an 

approximation ul]" i n  X, of the veloclty u((n+ 1 )  61). Furthermore,  i n  order to make the 

numerical computation easier, w e  f i r s t  compute a scalar quantity q i+ '  i n  P N ( n ) ,  that we 

cal l  the pseudo-pressure, such that grad 4'' i s  an approximation of the pressure gradient 

(grad p) ( (n+  1 )  6t) .  When the convergence i s  reached, the discrete pressure pN i s  then 

obtained by a post-treatment which i s  performed by solving a Poisson problem. 

Numer ica l  appl icat ions (see 8 Y.4) 'have been made w i t h  a Chebyshev spectral 

discretization. Thanks to th i s  choice, we can employ the Fast Four ier  Transform (FFT) in 

the computation of the derivatives (see [CLW][CT][02]). 

Y . 1 .  The d i sc re te  Drob lem f o r  v e l o c i t u  and DSeudo - D r e s s u r e  

We consider the Navier-Stokes equations (V .  1 l (1.2) w i t h  nu l l  r ight-hand side 1. For a 

given function g satisfying the assumptions ( I , l S ) ,  (1.16) and ( l l .26) ,  we introduce the 

subspace X,(g) of a l l  polynomials in X, satisfying the boundary conditions ( l l , 2 7 ) A .  

known in x,(g) x P,(cI), and we seek (u,"*' c') in xN(g> x P,(o) such that 

Let (u," , q,") be any i n i t i a l  quantit ies in X,(g) x P,(n). We assume that (u i  , q i )  is 

n+ 1 
UN -u; 

- v Au:* + grad q:" t ( u / * . V ) u ~ * ] ( x )  = 0 
[L 61 

(V.2) 
(div u/+' , div u;'~)~,, = inf (div wN , div wN)*,., , 

wN E xN(g) 

, x ~ $ n n  , 

In the equations (V.2), we use the following notation : fo r  any integer n 2 1 
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u;* = (3/2)  U; - (1 /2)  u;-' , 

Moreover, the operator L i s  a f i n i t e  difference approximation of I d  - r )A,  where I) i s  a 

posit ive parameter. More precisely, we set L = LlL2 , where 

(Y.3) , i = I or 2 ,  

and ai i s  the second-order f in i te  difference operator : for  example, i f  i i s  equal to 1 , for  any 

function w in C'CI), we define for any node xjf = (cj  , t k  i n  Z; n n 

Li = I d -  ?)ai 

A A  

The parameter r) ver i f ies  

~ ) = @ ~ 6 t t y V S t ~  , 

where @ and y are two nonnegative constants, and V i s  an estimate of the velocity norm. Note 

that, i f  L i s  chosen equal to the identi ty (i.e., 7) = 01, we have an exp l i c i t  Adams-Bashforth 

scheme. I n  fact, however, we choose 6 and y large enough to ensure a good s tab i l i t y  of the 

scheme. Indeed, th i s  scheme, when applied to the one-dimensional Burgers' equation, has 

been analysed i n  the periodic case; i t  has been proven [Me, Chap. 1 ] that for  r) large enough, 

i t  i s  unconditionally stable and has a precision upper-bounded by c(a) ( v  61 t 6t2 + N-') 

fo r  a l l  real  numbers u > 0. 

Y.7 V e l o c W  and Dseudo - Dressu re  c o m D u t a t i c a  

Problem (V.2) i s  solved in  two steps. F i r s t ,  we compute a predictor u;,'; of the 

velocity in  x,A(g). Then a corrector (vN , q N )  in P ~ ( c I ) ~  x P,(CI) i s  computed, so that the 

pa i r  (u:" , qi ' l )  defined by 

(V.4) 4 4 '  = u;;; + VN , I $ + I  = SN" t qN 

ver i f ies  the equations (V.2). 

(i) Yelocitu Dredictor c o r a u h ! & ~  

We f i r s t  solve the fol lowing problem : Finda polynomial u;,'; in Xi (g )  such that 
u;,+; -u; , x ~ ~ ; n ~ .  

(V.5) [ L  6t - v Aui* t grad q i  t (u;*.V)ui*](x) = 0 

This problem can be handled w i t h  standard l inear  system algor i thms. Indeed we can 

associate w i t h  each operator Li , i = 1 o r  2 ,  the operator Ti defined f rom C'(fi) into PN(n) 
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(V .6)  ' ciw(x) = L ~ W ( X )  , X E  z," n n , 

T ~ W ( X )  W(X) , x E z," n an . 

(ii) Velocitu corrector and --utatiqn, - 

(vN , q,) of p;(n12 x P,(I~) satisfies 

(L  2 + grad qN)(x) = o , x E z," n n 

Thanks to (V.41, the pa i r  (ui" , q:") i s  the solution of (V.2) i f  and only i f  the pa i r  

V 
, 

1 6 t .  
(V.7)  

(div u;,'; + div vN , div u:$ + div v , ) ~ , ~  = i n f  A (div wN , div wN)A,N 
wN E xN(g) 

I n  order to solve the problem (V.7) ,  we introduce an operator f rom P,(Q) into 

PN(n) which connects the pseudo-pressure q to div v. We f i r s t  define the operator grad i n  

the fol lowing way : for any rN in P,(n), g z d  rN belongs to PN(n)2 and satisfies 

(V.8)  (grad rN) (x )  = (grad rN) (x )  , x E E," n n , I ( gEd rN)(x) = 0 , x E z," n an . 

Then, weset ,  f o r  any rN i n  P,(O), 

(V.9)  At-, = - 6t  div (I-' grad rN) , 

Thus, we can consider the two fol lowing problems:  Find qN in P,(n) such that 

(v .  10)  (94.9, + div U/+; , s&qN + div U:,+;)A,~ 

and, secondly : Find vN in P;(nI2 such that 
V 

( v . 1 1 )  (L 2 + g r a d q N ) ( X ) = 0  , x ~ ~ , " n n  . 
6t 

In the computations, we handle the resolution of (V.7) by solving the system (V. 1 O)(V. 1 1 ). 

Hence, we are going to  prove that the equations (V. 10) and (V .  1 1 )  are equivalent to (V.7). 

F i r s t ,  we need some resul ts in order to prove that the minimizat ion problem ( V .  10)  
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I 

i s  equivalent to the minimization problem i n  (Y.7). 

m a  Y. L : I f  the parameter t) is small enough, the kernel  of the operator 99. is equal 
1 to Z1A.N and i ts range is equal to M ~ A , N  I 

P r o o f  : Clearly, Z,,,, i s  contained i n  the kernel of 99. and the range of 99. i s  contained i n  

the range of the divergence operator, hence i n  M2,1p , Consequently, i t  suffices to  prove that 

the kernel  of i s  contained i n  Z,,,, , since that th is  would imp ly  that i t  i s  equal to i t  and of 

dimension 8 ,  and that the image of s& and M2A,N have the same codirnension 8 in P i ( f l l 2 .  

Thus, let qN be any polynomial in the kernel of A. That impl ies that E'' g z d  qN i s  

divergence-free in 0 ;  since i t  belongs to P i ( f l l 2 ,  there exists a unique polynomial qN in 

(Y.12) L'' gzdq,  = curlqN i n  0 , 

W r i t i n g  the expansion of q N  i n  the form 

we obtain (a(+, ( I -x2)") / i3x)(x)  = ZnN., Gn(y) n ( n t 2 0 c + l )  J:(x) ( 1 -x2 Ia ,  so that the 

degree o f  q N  w i t h  respect to y i s  < N. Using a s im i la r  argument fo r  the var iable x ,  we 

deduce that qN belongs i n  fact to PN(n), Next, we compute 

P N + l ( f l )  n H q , o ( f l )  Such that 

N 
$"(x> = ( 1  -x2> cn=l Gn(y) (J;)'(x) I 

( grad qN , Curl ($N(  1 -X2)"( 1 -y2)") ( 1 -X2)-"( 1 - y 2 ) - " ) ~ , ~  

= (grad % , 
= In grad 4~ . curl (I#,( 1 -x2)"( 1 -y2>") dx = 0 

1 -x2>"( 1 -y2)") ( I  -x2)-"( 1 -y2)-a)A,N 

. 

That impl ies by (Y .  12) 

([(curl qN) , curl (qN( I -x2)"( I -y2>"> ( 1 -x2>-"( 

o r  equivalent 1 y 

(L(cur1 qN) , curl ( q N (  1 -x2jK( 1 -y2>"> ( 1 -x2>-"( 

1 ) In the case I) = 0, we have proven that 

((curl q N )  , curl (qN(  1 -x2>*( 1 -y2)") ( 1 -x2>-"( I - Y ~ ) - ~ ) A , N  = o . 
From the e l l i p t i c i t y  of th is  form on P;(fl), we deduce at once that q N  i s  equal to 0, hence 

that g z d  qN i s  equal to 0 ,  and qN belongs to Z , A , N  , 

2) In the case 73 > 0, denoting by c(N) the norm of the operators a, and a2 on the space 

p N ( n )  provided w i t h  the norm l l , l l1,A,f l  and w r i t i n g  L - id  = - 9 a,  -9 a2 + t)2 a la2  , we 

obtain 

0 2 c I I V N  II;,A,* - 9 [ 2  C(N) t 9 C ( N ) ~ I  IIJINII;,A,~ s 

whence the resu l t  for  T) small enough. 
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From the two resu l ts  of t h i s  lemma, we der ive  respect ively the two fol lowing 

(V .  14)  

propositions. 

ProDos i t lon  V .  1 : / f  the parameter 7) is smal l  enough, the system ( V  

equivalent to problem 0 . 7 ) .  

' AP,(X) = - (div sn+'l>(x) , x E z," n D , 

(apN/an)(x) = - (S"+' .n)(x> , x E s," n an . 

ProDost t ion V.2 : I f  fhe paremefer 7) is small enough, the sef of  values 

x E z," n 0 )  , where qN is a solution of problem (v.  I 01 , is uniquely defined and the 

solution vN of problem ( V .  1 1 )  is uniquely defined. 

I n  both Legendre and Chebyshev cases, the minimization problem (V .  10) can be solved 

thanks to the Axelsson's minimizat ion algori thm, which was aimed to problems associated 

w i t h  symmetrical nonnegative operators o r  w i t h  operators the symmetrical par t  of which 

i s  posit ive definite [Ax][J][Me]. I n  our case, even i f  the operator does not satisfy these 

assumptions, the algori thm tu rns  out to be eff icient when appropriate re- in i t ia l izat ions 

are used [Me, Chap. 2, 8 V11.3 and Chap. 4 ,  8 I V .  1 1 .  

Remark V.  L : Note that i t  i s  ra ther  standard to set up problems concerning pseudo- 

pressure, as i n  ( V .  101, b y  el iminating the velocity of the continuity equation. The basic idea 

of this procedure re l ies  upon the Uzawa's algori thm [ G l ] ,  since the pseudo-pressure plays 

the ro le  of the Lagrange mu l t i p l i e r .  

Problem ( V .  14) i s  solved through a f i n i t e  difference preconditioning method which 

involves the operator L defined in (V.3). Thus, pN is  computed as the l i m i t  of  the fol lowing 
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( V .  15) . (L(PN,ktl-PN,k))(X) = (ApN,k + div S"+')(x) s x E n n v 

(a(pN,kt,-pN,k)/anloF)(X> = - p (aPN,k/a" S"".n)(x) I E E," n an t 

2)  i f  x i s  a corner,  assuming fo r  instance that x i s  equal to a, = (e : ,  e,") ,  

the operator 8/anlD, i s  defined s i m i l a r l y  on the three other edges rll , 
square. 

and Tlv of the 

The parameters X and v are chosen exper imenta l l y ,  i n  o rder  to ensure the 

convergence of the sequence ( P , , ~  IkgO , I n  our computation, they are respectively equal to 

0.0 1 and 0.75. 

The f i n i t e  difference preconditioning method i s  well-known for spectral computations. 

I t  al lows one to avoid direct inversion of spectral operators (e.q. the operator A i n  our 

case), which i s  expensive because the corresponding matr ices are  f u l l  (see [ 0 2 ] ,  f o r  

instance). 

F ina l l y ,  let  us remark  that we did not look for the pressure in the space M, as i s  

suggested i n  the theory of 8 I11.3. This approach i s  now under consideration. 

Y.4.  N u m e r i c a l  r e s u 1 h  

The numerical experiments were performed in domains of R3 w i th  curved geometries, 

i n  which we generalized the previous algorithm. Indeed, we can use spectral techniques i n  a 

curved connected open set h c R3,  i f  there exists a one-to-one function 5 which i s  

suff iciently smooth and maps the reference cube fl = 1- 1 , l  [3  onto h. Thanks to the function 

9, a problem in i t i a l l y  set i n  fi i s  brought back to the cube fl. 

The set of  spur ious modes fo r  pressure can be identi f ied fo r  three-dimensional 

problems [BMM, Lemme V. 1 ][BCM, Remark IV.31, and we can obtain a well-posed problem 

fo r  the Navier-Stokes equations in a cube as has been done i n  the two-dimensional case. 



~ 
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Moreover, we re fe r  to [ l e ,  Chap. 2 and 31 f o r  detai,; about Liscretization o 

equations in curved geometries. 

Navier-Stokes 

Let x = (x, , x2 , x3)  and = (2 ,  , i2 , g 3 )  denote the generic points of CI and f i ,  
respectively. I n  our numerical applications, we have considered the set fi to be defined as a 

curved hexahedron of R3,  two opposite sides of  which are  plane and paral le l .  Without 

restr ict ion,  we assume that these two sides are paral lel to the plane i2  = 0 .  The nozzle ?I i s  

then defined f rom i t s  boundary : l e t  f i  : = [ -  1 , l  l 2  -+ R 3 ,  1 < i 4 4 ,  be the 

parametrizations of the four other sides (see Figure V. 1 ) .  

The function 9 can be defined as follows : fo r  x = (x ,  , x2 , x,), we set 

= ( (  1 +x3) /2 )  f 3 ( ~ 1  , x,) + (( 1 -x3) /2 )  f l (x l  , x2> 

+ (( 1 +x,)/2) [ # 4 ( ~ 2  I ~ 3 )  - (( 1 +x3)/2) f 4 ( ~ 2  , + 1 )  - (( 1 -x3) /2)  f4(x2 , - 1 > I  
+ (( 1 -x , ) /2 )  [ f2(x2 , x,) - (( 1 +x3) /2 )  f2(x2 , + 1 )  - (( 1 -x3) /2 )  f2(x2 , - 1 11 , 

Clearly, we have %(an) = ah. Moreover, we assume that the function 9 i s  one-to-one 

and that $(n) = h. This last p roper ty  can be deduced f rom hypotheses of smoothness 

concerning the function 9 (see [Me, Chap. 3, Th. V. 11) .  

I n  the example below, the open set h i s  a nozzle, the cross section of  which in any 

plane x, = constant i s  a rectangle. The function 5 i s  s imply defined by 



F ( x )  = 

, x , = + l  , 

r ,  
x1  = R X 1  + @  

i2 = x2 
i 3  x3 { (x i )  

0 
0 
0 

U b 0 & ( X )  = 

, x 3 = + 1  . 

' 3  ( 1  -X:) 1 4  {(xl) 
0 
3  (1-x:) X j f ' ( x1)  1 4  o( { ( x i )  

F igu re  V.2 shows the mesh. I n  F igure  V .3 ,  the ve loc i ty  iso-norms and the 

iso-pressure l ines are presented i n  the plane x2 = 0, at the t ime 10 61 (when the stationary 

state i s  already reached). 

F igu re  V.4 shows the iso-pseudo-pressure l ines.  The spu r ious  mode T,(x,) ( the  

extrema of which coincide w i t h  the vert ical  l ines of the mesh) appears c lear ly  and total ly 

hides the pressure behavior. 

F igure  V.5 shows the convergence of the a lgor i thm ( V . 1 3 )  fo r  the pressure  

post-treatment. Due to Neumann boundary conditions, the convergence i s  rather slow, so 

that the technique must be improved i n  order to obtain an eff icient pressure solver. 

Nevertheless, we obtain good resul ts concerning the velocity. Note that we have 

((div u,"") o 5, (div u,"") o &):,': = 6 .4  . 10- 4 . 
This quantity can of course be reduced by increasing the number of collocation points. We 

re fe r  to [Me,  Chap. 4 ,  8 IV.31 fo r  another way to reduce ((div u,"") o&,(d iv  U ; " ) O & ) ~ , ~ .  
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